

Publishing Information

Book Title

Web Development – Personal Portfolio

Author

Clarence Scott

Publisher

Self Published

2025 Edition

Copyright Notice

© 2025 by Clarence Scott II. All rights reserved.
No part of this book may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means without the prior written permission of the publisher, except
in the case of brief quotations embodied in critical articles or reviews.

Edition

First Edition

Disclaimer

The information contained in this book is provided for educational purposes only.
While every effort has been made to ensure accuracy, the author and publisher are not
responsible for errors, omissions, or damages resulting from the use of this material.

Printing Information

Printed in Flint, Michigan

Printed by Clarence Scott II

Contact Information

For inquiries, feedback, or bulk orders, please contact:
scottclarence5@gmail.com | support@clarencescott.tech

https://clarencescott.tech | https://clarencescott.github.io

810.241.8724

mailto:scottclarence5@gmail.com
mailto:support@clarencescott.tech
https://clarencescott.tech/
https://clarencescott.github.io/

Table of Contents

1. Introduction: Why Build a Portfolio Website?

o What You'll Learn

o Why Building a Portfolio Website Is Important

2. Chapter 1: Getting Started

o What Tools You Need

o Installing Your Tools

o Setting Up Your GitHub Pages Account

3. Chapter 2: Understanding the Template

o The Layout

o The Structure of a Web Page

4. Chapter 3: Building the Structure with HTML

o Setting Up the HTML

o Writing the Basic HTML Structure

5. Chapter 4: Styling with CSS

o Linking the CSS to HTML

o Styling the Header

o Styling the Navigation

6. Chapter 5: Making It Interactive with JavaScript

o JavaScript Basics

o Smooth Scrolling for Navigation

7. Chapter 6: Personalizing Your Website

o About Me Section

o Projects Section

o Skills Section

8. Chapter 7: Personalizing Your Website

o Contact Section

o Footer Section

o Testing Finalization

9. Chapter 8: Hosting Your Website on GitHub Pages

o Push to GitHub

o Activate GitHub Pages

10. Conclusion: What's Next?

o Next Steps and How to Keep Improving Your Portfolio

Introduction: Why Build a Portfolio Website?

What You'll Learn

Welcome to your journey of becoming a web developer! In this book, you will learn
how to build your very own portfolio website from scratch. Not only will you learn the basics
of HTML, CSS, and JavaScript, but you’ll also gain valuable experience working with
GitHub, one of the most widely used platforms in the development world.

By the end of this book, you’ll have a fully functional portfolio that you can
showcase to potential employers, clients, or collaborators. Hosting it on GitHub Pages will
also give you the opportunity to share your work with the world for free, which is a huge
advantage when you’re starting out.

Why Build a Portfolio Website?

In the competitive world of web development and design, having a strong online
presence is essential. Your portfolio website is more than just a personal project; it’s a tool
that showcases your skills, projects, and growth as a developer. Here’s why it matters:

• Stand Out in the Job Market: A portfolio website makes you more visible to
potential employers and clients. It serves as proof that you know how to build
websites and that you’re familiar with important development tools and practices
like version control (Git) and deploying websites (GitHub Pages).

• Showcase Your Work: Your portfolio will be a living document of all the work you’ve
done so far. Whether it’s personal projects, freelance work, or school assignments,
having a central place to show it off makes it easy for others to understand your
skills and style.

• Personal Branding: A well-crafted portfolio can help build your personal brand. You
can use your portfolio to showcase your unique voice and interests, which will make
it stand out from others in the field. It’s a reflection of you as a developer.

• Hands-On Experience: Building a portfolio website will give you practical, real-
world experience with the tools and technologies used by developers in the industry
today. A great way to learn, build confidence, and create something that you can be
proud of.

What to Expect in This Book

In this book, I’ll walk you through every step of the process to create your own portfolio
website. You don’t need any prior experience in coding; we’ll start from the basics and build
up. Here’s what you can expect:

• HTML: We’ll begin by creating the structure of your website using HTML. You’ll learn
how to create headings, paragraphs, links, images, and other essential elements to
make your portfolio functional.

• CSS: Next, we’ll style your website with CSS to make it visually appealing. You’ll
learn how to change fonts, colors, spacing, and layout, making your website look
professional and clean.

• JavaScript: We’ll add interactivity to your portfolio with JavaScript. This might
include things like smooth scrolling or interactive elements that make your website
more dynamic and engaging.

• GitHub Pages: Finally, we’ll show you how to host your website on GitHub Pages for
free, making it accessible to anyone, anywhere. You’ll get hands-on experience with
GitHub, which is an essential tool for any developer.

Why GitHub Pages?

GitHub Pages is a free hosting service that lets you host static websites directly from a
GitHub repository. This makes it the perfect choice for hosting your portfolio because:

• It’s completely free.

• It’s easy to set up, even if you’re a beginner.

• It integrates directly with GitHub, so you can easily update your portfolio as you
make improvements or add new projects.

Additionally, using GitHub to host your portfolio shows employers that you’re familiar with
version control, which is a highly valuable skill in the tech industry.

Conclusion: Let’s Get Started!

By the end of this book, you’ll have created something tangible—a website that
showcases your skills and passion for web development. Whether you’re looking for a job,
seeking freelance opportunities, or just building a personal brand, your portfolio website
will be your digital calling card.

So, let’s dive in and start building your portfolio website today. Grab your tools, fire
up your text editor, and let’s begin!

Figure 1 Image of GitHub
logo

Chapter 1: Getting Started

What Tools You Need

Before we start building your portfolio website, let’s make sure you have everything you
need. Don’t worry if you’ve never done this before—this chapter is designed to set you up
for success. Below are the tools and resources we’ll be using:

1. Text Editor:

o We recommend using Visual Studio Code (VS Code), a powerful, beginner-
friendly text editor that’s free to use. It supports extensions to make coding
easier and more efficient.

o Alternative: Sublime Text, Atom, or even Notepad++.

2. Web Browser:

o Any modern browser will work, but we recommend Google Chrome or
Firefox Developer Edition for their developer tools.

3. Git:

o Git is version control software that allows you to manage your code and track
changes.

o Download and install Git from git-scm.com.

4. GitHub Account:

o GitHub is where we’ll store your website’s

o files and host your portfolio for free.

o Sign up for a free account at github.com.

5. Basic Terminal Knowledge:

o We’ll use the terminal (or command prompt) to push your files to GitHub.
Don’t worry; we’ll explain each command step by step.

6. A Notebook (Optional):

o Keep a notebook or digital note-taking tool handy to jot down concepts, tips,
and ideas as you go.

https://code.visualstudio.com/
https://git-scm.com/
https://github.com/

Installing Your Tools

Here’s how to get your environment set up:

1. Install VS Code:

o Download it from Visual Studio Code’s website.

o Follow the installation prompts for your operating system (Windows, Mac, or
Linux).

2. Install Git:

o Download Git from git-scm.com.

o During installation, you’ll be asked to configure settings like the default text
editor (choose VS Code) and PATH environment. Stick to the default options
unless otherwise noted.

3. Set Up GitHub:

o Create a GitHub account at github.com.

o After signing up, set up a new repository for your project (we’ll go into detail
later in Chapter 7).

4. Install Browser Extensions (Optional):

o Install extensions like "Live Server" in VS Code for real-time updates as you
work on your project.

Setting Up Your GitHub Pages Account

Let’s quickly get your GitHub Pages account ready so you’ll be all set when it’s time
to host your site.

1. Create a New Repository:

o Log in to your GitHub account and click the New button to create a
repository.

o Name the repository something like my-portfolio and select “Public” so
others can view it online.

https://code.visualstudio.com/
https://git-scm.com/
https://github.com/

2. Clone the Repository:

o In your terminal, type the following commands to connect your repository to
your local computer:

git clone https://github.com/your-username/my-portfolio.git

cd my-portfolio

o Replace your-username with your GitHub username.

3. Add a README File:

o Create a README.md file in your repository. This file will describe your
project. You can use this command in the terminal:

echo "# My Portfolio Website" > README.md

4. Set Up GitHub Pages:

o Go to the "Settings" tab of your repository.

o Scroll down to Pages and select the branch (e.g., main) and folder (usually
/root) where your site will be hosted.

Please note, if you are having trouble using the command line to push to github, you
can manually add the files to the repository online.

Ready to Build

Congratulations! Your tools are set up, and your GitHub repository is ready to go.
You’re now fully equipped to start building your portfolio website. In the next chapter, we’ll
dive into understanding the template you’ll use and breaking down the structure of a web
page.

Chapter 2: Understanding the Template

Why Start with a Template?

When you’re starting out, building a website entirely from scratch can feel
overwhelming. That’s why we’re using a pre-defined structure (a template) to guide you.
This template provides a framework that will help you:

• Understand how HTML, CSS, and JavaScript work together.

• Focus on learning coding principles without getting lost in design choices.

• Build confidence by completing a functional project quickly.

In this chapter, we’ll break down the Portfolio Template you’ll create and customize
step by step.

What Does the Template Include?

Your portfolio website will be made up of the following sections:

1. Header:

o This section will include your name or logo and a navigation bar.

o Example: "John Doe - Web Developer" with links to "About," "Projects," and
"Contact."

2. Hero Section:

o A visually striking section to introduce yourself and your role.

o Example: A background image with text like, “Hi, I’m John, a Front-End
Developer.”

3. About Section:

o This section gives visitors an overview of who you are, your skills, and your
journey.

o Example: A short bio and a list of skills or technologies like HTML, CSS, and
JavaScript.

4. Projects Section:

o The main highlight of your portfolio where you’ll showcase completed
projects.

o Example: Cards or images for each project, with links to GitHub repositories
or live demos.

5. Contact Section:

o A way for visitors to reach you.

o Example: A form to submit messages or links to your email and social media.

6. Footer:

o A simple footer to display copyright information or quick links.

Folder Structure

Before we start coding, let’s map out how your project files will be organized. Keeping your
files structured is crucial for clean and maintainable code. Below is the suggested folder │
index.html

│ LICENSE.txt

│ README.md.txt

├───build

├───config

├───docs

├───public

├───src

│ │ index.js.txt

│ ├───assets

│ │ ├───scripts

│ │ └───styles

 This folder structure is a little different from your downloaded files but follows the same
organization model.

HTML Template: The Skeleton

Here’s the basic structure of your index.html file:

We’ll build this later, customizing each part to fit your vision.

Customizing the Template

While the skeleton above is generic, the magic happens in customization. You’ll add your
personality and skills by:

• Writing engaging content for the About Section.

• Choosing or creating unique visuals for the Hero Section and Projects Section.

• Styling your site with CSS to match your brand.

• Adding interactive elements with JavaScript.

How It All Fits Together

Think of your portfolio website as a puzzle. Each section and file plays an important role:

• HTML: The structure or “bones” of the website.

• CSS: The design or “skin” that makes it look good.

• JavaScript: The interactivity or “muscles” that make it dynamic.

By the end of this book, you’ll know how to put all the pieces together to create a
functional, visually appealing, and professional website.

Next Steps

Now that you understand the template and structure, it’s time to bring it to life! In Chapter
3, we’ll begin coding the first section of your website—the Header and Navigation Bar.

Chapter 3: Building the Header and Navigation Bar

Introduction to the Header

The header is the first thing visitors see on your website. It serves two important purposes:

1. Brand Identity: This is where you showcase your name or logo, helping visitors
know they’re in the right place.

2. Navigation: It provides links to different sections of your website, making it easy to
explore.

In this chapter, you’ll learn to create a professional and functional header with a navigation
bar that links to other sections of your portfolio.

What You’ll Learn in This Chapter

• How to structure the header using HTML.

• How to style the header and navigation bar with CSS.

• Adding smooth scrolling to navigation links using JavaScript.

Step 1: Coding the Header Structure

Open your index.html file and locate the <header> tag. Add the following code:

 <header>

 <!-- Header Content -->

 <div class="logo">

 <h1>John Doe</h1>

 </div>

 <nav>

 <ul class="nav-links">

 Home

 About

 Projects

 Contact

 </nav>

 </header>

Explanation:

• <div class="logo">: Contains your name or logo. You can replace "John Doe" with
your name or an image.

• <nav>: The navigation bar contains a list of links (and). These links are
connected to the sections of your site using id attributes (e.g., #about, #projects).

Step 2: Styling the Header with CSS

Open your style.css file and add the following styles to give the header a professional look:

header {

 display: flex;

 justify-content: space-between;

 align-items: center;

 padding: 20px;

 background-color: #333;

 color: #fff;

 }

 header .logo h1 {

 font-size: 24px;

 margin: 0;

 }

 nav ul {

 list-style-type: none;

 display: flex;

 gap: 20px;

 margin: 0;

 padding: 0;

 }

 nav ul li a {

 text-decoration: none;

 color: #fff;

 font-size: 16px;

 transition: color 0.3s ease;

 }

 nav ul li a:hover {

 color: #f4d03f; /* Accent color for hover effect */

 }

Explanation:
• display: flex;: Aligns the logo and navigation links horizontally.
• justify-content: space-between;: Adds space between the logo and navigation

bar.
• Hover effect: Changes the link color on hover to make it more interactive.

Step 3: Adding Smooth Scrolling with JavaScript

Smooth scrolling enhances user experience by making transitions between
sections fluid. Add the following code to your script.js file:
// Smooth Scrolling

document.querySelectorAll('a[href^="#"]').forEach(anchor => {

 anchor.addEventListener('click', function (e) {

 e.preventDefault();

 const target = document.querySelector(this.getAttribute('href'));

 target.scrollIntoView({

 behavior: 'smooth',

 block: 'start'

 });

 });

 });

Explanation:
• This script selects all links that start with # (the navigation links).
• When clicked, it prevents the default action and smoothly scrolls to the

corresponding section.
•

Step 4: Testing Your Header

1. Open your website in a browser and ensure the header looks as intended.
2. Click the navigation links and confirm they scroll to the correct sections.

1. Unless you’ve added additional div/section containers, you will not see the
scroll animation.

3. Adjust colors, fonts, or spacing as needed to match your style.

*** To open your webpage, double click your index.html file in your folder, each time
you save your document, refresh the page to see the changes. ***

What’s Next?

Now that your header and navigation bar are set up, we’ll move on to the Hero
Section in Chapter 4. This is where you’ll create a strong first impression with a visually
striking introduction.

Chapter 4: Designing the Hero Section

Introduction to the Hero Section

The Hero Section is the first large section visitors see when they land on your site.
It’s an opportunity to make a powerful impression. A well-designed hero section
introduces who you are and what you do while setting the tone for the rest of your portfolio.

In this chapter, you’ll create a visually engaging hero section that highlights your
name, title, and a brief introduction. You’ll also learn how to style the hero section with an
eye-catching background and a call-to-action button.

What You’ll Learn in This Chapter

• Structuring the hero section with HTML.

• Adding and styling a background image with CSS.

• Creating a bold call-to-action button.

• Ensuring responsiveness across different screen sizes.

Step 1: Coding the Hero Section Structure

Add the following code to your index.html file, just below the <header>:

 <section id="hero" class="hero-section">

 <div class="hero-content">

 <h1>Hello, I'm John Doe</h1>

 <p>I’m a Web Developer passionate about creating clean, functional,

 and visually appealing websites.</p>

 View My Work

 </div>

 </section>

Step 2: Styling the Hero Section with CSS

Open your style.css file and add the following styles for the hero section:

.hero-section {

 height: 100vh;

 background-image: url('https://via.placeholder.com/1920x1080'); /*

Replace with your image */

 background-size: cover;

 background-position: center;

 display: flex;

 justify-content: center;

 align-items: center;

 text-align: center;

 color: #000;

 padding: 20px;

 }

 .hero-content h1 {

 font-size: 3rem;

 margin: 0 0 20px;

 font-weight: bold;

 }

 .hero-content p {

 font-size: 1.5rem;

 margin: 0 0 30px;

 line-height: 1.6;

 }

 .cta-button {

 display: inline-block;

 padding: 10px 20px;

 font-size: 1.2rem;

 color: #333;

 background-color: #f4d03f;

 border: none;

 border-radius: 8px;

 text-decoration: none;

 transition: background-color 0.3s ease;

 }

 .cta-button:hover {

 background-color: #ffd700;

 }

Explanation:

• height: 100vh;: Ensures the hero section spans the entire viewport height.

• background-image: Adds a visually striking background image. Replace the
placeholder URL with your own image link.

• Centered Content: The display: flex; justify-content: center; align-items: center;
ensures the content is perfectly centered.

• CTA Button: Styled with a bright color to stand out and grab attention, with hover
effects for interactivity.

Step 3: Making the Hero Section Responsive

To ensure your hero section looks great on smaller screens, add these media queries to
your style.css file:

 /* Responsive Hero Section */

@media (max-width: 768px) {

 .hero-content h1 {

 font-size: 2.5rem;

 }

 .hero-content p {

 font-size: 1.2rem;

 }

 .cta-button {

 font-size: 1rem;

 padding: 8px 16px;

 }

 }

 @media (max-width: 480px) {

 .hero-content h1 {

 font-size: 2rem;

 }

 .hero-content p {

 font-size: 1rem;

 }

 .cta-button {

 font-size: 0.9rem;

 padding: 6px 12px;

 }

 }

Explanation:

• Adjusts font sizes and padding for smaller screens to maintain readability and
usability.

• Ensures the hero section remains visually balanced on all devices.

Step 4: Testing Your Hero Section

1. Open your site in a browser to see the hero section in action.

2. Replace the placeholder image with your own to personalize the background.

3. Test the site on different screen sizes (desktop, tablet, mobile) to confirm
responsiveness.

What’s Next?

With a stunning hero section completed, we’re ready to move on to Chapter 5:
Crafting the About Section. Here, you’ll dive deeper into your story, skills, and what
makes you unique as a developer.

Chapter 5: Crafting the About Section

Introduction to the About Section

The About Section is your chance to tell visitors more about yourself and what sets
you apart as a developer. It’s an opportunity to connect with your audience, share your
skills, experience, and values, and make your portfolio feel personal.

In this chapter, we’ll design an About Section that highlights who you are, what you
do, and your unique strengths. You’ll also learn how to integrate visuals like profile pictures
or icons to make the section more engaging.

What You’ll Learn in This Chapter

• Structuring an About Section with HTML.

• Styling text and images for a clean, professional look.

• Adding a list of skills or services using icons.

• Making the section responsive for different screen sizes.

Step 1: Coding the About Section Structure

Add the following code to your index.html file, below the hero section:

 <section id="about" class="about-section">

 <div class="about-content">

 <div class="about-text">

 <h2>About Me</h2>

 <p>

 Hi, I’m John Doe, a passionate Web Developer with a knack for

turning ideas into visually appealing and functional websites. With

experience in HTML, CSS, and JavaScript, I aim to deliver solutions that

are user-friendly and impactful.

 </p>

 <p>

 Outside of coding, I enjoy exploring new technologies, solving

complex problems, and collaborating with like-minded individuals to create

amazing projects.

 </p>

 </div>

 <div class="about-image">

 </div>

 </div>

 </section>

Explanation:

• <section id="about" class="about-section">: Creates the About Section and
assigns an ID and class for styling and navigation.

• <div class="about-content">: Wraps the text and image into a flex container for
side-by-side alignment.

• <div class="about-text">: Contains the heading and paragraphs to introduce
yourself.

• : Displays a placeholder profile picture. Replace it with your actual photo.

Step 2: Styling the About Section
Open your style.css file and add the following styles for the About Section:

.about-section {

 padding: 60px 20px;

 background-color: #f9f9f9;

 }

 .about-content {

 display: flex;

 align-items: center;

 justify-content: space-between;

 flex-wrap: wrap;

 gap: 20px;

 max-width: 1200px;

 margin: 0 auto;

 }

 .about-text {

 flex: 1 1 50%;

 max-width: 600px;

 }

 .about-text h2 {

 font-size: 2.5rem;

 color: #333;

 margin-bottom: 20px;

 }

 .about-text p {

 font-size: 1.2rem;

 color: #555;

 line-height: 1.8;

 margin-bottom: 20px;

 }

 .about-image {

 flex: 1 1 40%;

 max-width: 300px;

 }

 .about-image img {

 width: 100%;

 border-radius: 50%;

 box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);

 }

Explanation:
• Flexbox Layout: Aligns text and image side by side, with space to wrap on smaller

screens.
• Padding and Background: Adds spacing around the section and a light background

color for contrast.
• Typography: Uses clean, readable font sizes and line spacing for text.
• Rounded Image: Applies a circular style to the profile picture for a polished look.

Step 3: Making the About Section Responsive
Add these media queries to your style.css file to ensure the About Section looks great on
all devices:
 /* Responsive About Section */

@media (max-width: 768px) {

 .about-content {

 flex-direction: column;

 align-items: center;

 text-align: center;

 }

 .about-text {

 max-width: 100%;

 }

 .about-image {

 max-width: 200px;

 }

 }

 @media (max-width: 480px) {

 .about-text h2 {

 font-size: 2rem;

 }

 .about-text p {

 font-size: 1rem;

 }

 }

Explanation:
• On tablets and smaller screens, the text and image stack vertically for readability.
• The image size and text are adjusted for smaller displays to maintain balance.

Step 4: Adding Skills or Services (Optional)

To make your About Section more dynamic, add a list of your skills or services with icons.
Update your index.html file:
HTML
 <div class="skills">

 <h3>My Skills</h3>

 <i class="fas fa-code"></i> Web Development

 <i class="fas fa-paint-brush"></i> UI/UX Design

 <i class="fas fa-database"></i> Database Management

 <i class="fas fa-shield-alt"></i> Cybersecurity

 </div>

 </div>

CSS
 /* Skills Section */

.skills {

 margin-top: 30px;

 }

 .skills h3 {

 font-size: 1.8rem;

 margin-bottom: 15px;

 color: #333;

 }

 .skills ul {

 list-style: none;

 padding: 0;

 }

 .skills li {

 font-size: 1.2rem;

 color: #555;

 margin-bottom: 10px;

 display: flex;

 align-items: center;

 gap: 10px;

 }

 .skills li i {

 color: #f4d03f;

 font-size: 1.5rem;

 }

What’s Next?

With your About Section completed, visitors now have a chance to connect with
your story and skills. In Chapter 6: Building the Projects Section, you’ll showcase your
best work with interactive project cards.

Chapter 6: Showcasing Your Projects

Introduction to the Projects Section

The Projects Section is the heart of your portfolio website. This is where you showcase
your best work to demonstrate your skills and creativity. Each project should highlight what
you built, how you approached the problem, and the technologies you used.
In this chapter, we’ll build a visually appealing Projects Section with interactive project
cards. These cards will include titles, descriptions, images, and links to live demos or
GitHub repositories.

What You’ll Learn in This Chapter

• Structuring the Projects Section using HTML.
• Styling project cards with CSS for a clean, professional layout.
• Adding hover effects to make the cards interactive.
• Making the section responsive for various screen sizes.

Step 1: Coding the Projects Section Structure
Add the following code to your index.html file, below the About Section:
 <section id="projects" class="projects-section">

 <h2>My Projects</h2>

 <div class="projects-container">

 <div class="project-card">

 <h3>Project 1: Portfolio Website</h3>

 <p>

 A personal portfolio website showcasing my skills, projects, and

contact information. Built with HTML, CSS, and JavaScript.

 </p>

 <a href="https://github.com/username/portfolio"

target="_blank">View on GitHub

 </div>

 <div class="project-card">

 <h3>Project 2: E-commerce Site</h3>

 <p>

 A fully functional e-commerce platform with a product catalog,

shopping cart, and secure checkout process.

 </p>

 <a href="https://github.com/username/ecommerce"

target="_blank">View on GitHub

 </div>

 <div class="project-card">

 <h3>Project 3: Blog Application</h3>

 <p>

 A responsive blog platform with a content management system,

allowing users to create, edit, and share posts.

 </p>

 View on

GitHub

 </div>

 </div>

 </section>

Explanation:
• <section id="projects" class="projects-section">: Defines the Projects Section

with an ID for navigation and a class for styling.
• <div class="projects-container">: Wraps all project cards in a grid layout.
• <div class="project-card">: Represents an individual project card with an image,

title, description, and link.

Step 2: Styling the Projects Section
Open your style.css file and add the following styles for the Projects Section:
 /* Projects Section Styles */

.projects-section {

 padding: 60px 20px;

 background-color: #ffffff;

 }

 .projects-section h2 {

 font-size: 2.5rem;

 text-align: center;

 color: #333;

 margin-bottom: 40px;

 }

 .projects-container {

 display: grid;

 grid-template-columns: repeat(auto-fit, minmax(300px, 1fr));

 gap: 20px;

 max-width: 1200px;

 margin: 0 auto;

 }

 .project-card {

 background-color: #f9f9f9;

 border-radius: 10px;

 box-shadow: 0 4px 10px rgba(0, 0, 0, 0.1);

 overflow: hidden;

 text-align: center;

 transition: transform 0.3s ease, box-shadow 0.3s ease;

 }

 .project-card img {

 width: 100%;

 height: auto;

 }

 .project-card h3 {

 font-size: 1.5rem;

 margin: 20px 0;

 color: #333;

 }

 .project-card p {

 font-size: 1rem;

 color: #555;

 margin: 10px 20px 20px;

 }

 .project-card a {

 display: inline-block;

 margin-bottom: 20px;

 padding: 10px 20px;

 background-color: #007BFF;

 color: #ffffff;

 text-decoration: none;

 border-radius: 5px;

 font-size: 1rem;

 transition: background-color 0.3s ease;

 }

 .project-card a:hover {

 background-color: #0056b3;

 }

 .project-card:hover {

 transform: translateY(-10px);

 box-shadow: 0 6px 15px rgba(0, 0, 0, 0.2);

 }

Explanation:
• Grid Layout: Uses CSS Grid to display project cards in a responsive layout.

• Card Styling: Applies a modern design with rounded corners, shadows, and
smooth hover effects.

• Hover Effects: Adds interactivity by moving the card slightly upward and darkening
the shadow on hover.

Step 3: Making the Projects Section Responsive
To ensure the Projects Section looks great on all devices, add these media queries to your
style.css file:
/* Responsive Projects Section */

@media (max-width: 768px) {

 .projects-container {

 grid-template-columns: 1fr;

 }

 }

 @media (max-width: 480px) {

 .project-card h3 {

 font-size: 1.2rem;

 }

 .project-card p {

 font-size: 0.9rem;

 }

 .project-card a {

 font-size: 0.9rem;

 }

 }

Explanation:
• On smaller screens, the grid adjusts to display one project card per row for

readability.
• Font sizes are reduced for better scaling on mobile devices.

Step 4: Adding More Projects

To add more projects, simply duplicate a <div class="project-card"> block and
update the content. Replace the placeholder image, project title, description, and link with
your project details.

What’s Next?

Your Projects Section is now live and ready to impress visitors. In Chapter 7:
Contact Section, we’ll create a simple yet effective way for people to reach out to you.

Chapter 7: Personalizing Your Website
In this chapter, we’ll focus on adding the finishing touches to your portfolio website

by personalizing the Contact and Footer Sections.

These elements will give your website a polished, professional look while making it

easy for visitors to connect with you. We'll also cover testing and finalizing your website to
ensure it works seamlessly.

What You’ll Learn in This Chapter

• Building a functional Contact Section with a form or contact links.
• Designing a professional Footer Section with branding and social links.
• Testing your website for responsiveness and cross-browser compatibility.
• Deploying your finalized website on GitHub Pages.

Section 1: Creating the Contact Section
Step 1: Adding the Contact Form
A Contact Section is essential for allowing potential clients or collaborators to reach out.
Add this code to your index.html file after the Projects Section:
 <section id="contact" class="contact-section">

 <h2>Contact Me</h2>

 <p>I'd love to hear from you! Feel free to reach out using the form

below or through my social links.</p>

 <form action="https://formspree.io/f/YOUR_FORM_ID" method="POST"

class="contact-form" onsubmit="return validateForm()">

 <input

 type="text"

 name="name"

 id="name"

 placeholder="Your Name"

 pattern="[A-Za-z\s]{2,50}"

 title="Name must be 2-50 characters long and contain only letters

and spaces."

 required

 />

 <input

 type="email"

 name="email"

 id="email"

 placeholder="Your Email"

 title="Please enter a valid email address."

 required

 />

 <textarea

 name="message"

 id="message"

 placeholder="Your Message"

 rows="5"

 minlength="10"

 maxlength="500"

 title="Message must be between 10 and 500 characters."

 required

 ></textarea>

 <button type="submit">Send Message</button>

 </form>

 </section>

Explanation:
• Formspree Integration: Allows you to process form submissions without backend

coding. Replace YOUR_FORM_ID with your Formspree ID. There are many others
you can use, please do research to fit your comfortability.

• Contact Form Fields: Includes fields for name, email, and message.
• Name Field Filtering:

o Added the pattern attribute to ensure the name only contains letters and
spaces, with a length of 2-50 characters.

o title provides user guidance for invalid input.
• Email Field:

o HTML5 email validation automatically ensures a properly formatted email
address.

• Message Field:
o minlength and maxlength attributes enforce a message length between 10

and 500 characters.
o title provides a clear error message for the user.

Step 2: Styling the Contact Section
Add the following styles to your style.css file:
 /* Contact Section Styles */

.contact-section {

 padding: 60px 20px;

 background-color: #f5f5f5;

 text-align: center;

 }

 .contact-section h2 {

 font-size: 2.5rem;

 color: #333;

 margin-bottom: 20px;

 }

 .contact-section p {

 font-size: 1rem;

 color: #666;

 margin-bottom: 40px;

 }

 .contact-form {

 max-width: 600px;

 margin: 0 auto;

 }

 .contact-form input,

 .contact-form textarea {

 width: 100%;

 padding: 10px;

 margin: 10px 0;

 border: 1px solid #ccc;

 border-radius: 5px;

 font-size: 1rem;

 }

 .contact-form button {

 padding: 10px 20px;

 background-color: #007BFF;

 color: white;

 border: none;

 border-radius: 5px;

 cursor: pointer;

 font-size: 1rem;

 transition: background-color 0.3s ease;

 }

 .contact-form button:hover {

 background-color: #0056b3;

 }

Explanation:
• Input Styling: Ensures a clean and professional appearance for form fields.
• Button Hover Effects: Adds interactivity when users hover over the "Send Message"

button.

Section 2: Designing the Footer Section
The Footer Section provides a professional way to wrap up your website while reinforcing
your branding.

Step 1: Adding the Footer
Add the following code to your index.html file at the bottom:
 <footer class="footer-section">

 <p>© 2025 Your Name. All rights reserved.</p>

 <ul class="social-links">

 <a href=https://github.com/username

target="_blank">GitHub

<a href="https://linkedin.com/in/username"

target="_blank">LinkedIn

<a href="https://twitter.com/username"

target="_blank">Twitter

 </footer>

Step 2: Styling the Footer
Add the following CSS to your style.css file:
/* Footer Section Styles */

.footer-section {

 padding: 20px;

 background-color: #333;

 color: #fff;

 text-align: center;

 }

 .footer-section p {

 margin: 0;

 font-size: 1rem;

 }

 .social-links {

 list-style: none;

 padding: 0;

 margin: 10px 0 0;

 display: flex;

 justify-content: center;

 gap: 15px;

 }

 .social-links li {

 display: inline;

 }

 .social-links a {

 color: #007BFF;

 text-decoration: none;

https://github.com/username

 font-size: 1rem;

 }

 .social-links a:hover {

 color: #0056b3;

 }

Explanation:

• Footer Background: A dark background gives the footer a clean, professional
finish.

• Social Links: Styled as inline links with hover effects for a modern look.

Section 3: Testing and Finalizing Your Website

Before launching your website, it’s crucial to test it for functionality,
responsiveness, and compatibility.

Step 1: Checklist for Testing

1. Responsiveness: Check how your website looks on various devices (desktop,
tablet, and mobile) by right-clicking and using the inspect element in your browser.

2. Forms: Submit the Contact Form to ensure it works correctly, you may have to
activate your form first.

3. Links: Verify that all navigation and social media links are functional.
4. Browser Compatibility: Test your website in multiple browsers (Chrome, Firefox,

Safari, Edge).

Step 2: Deploying Your Website

Deploying your website on GitHub Pages is easy. Follow these steps:

1. Commit all changes to your GitHub repository.
2. Go to the repository settings on GitHub.
3. Scroll down to the Pages section.
4. Select the branch (main or master) and root folder to deploy.
5. Your website will be live at https://username.github.io/repository-name.

In Chapter 8: Conclusion, we’ll summarize the skills you’ve learned and discuss next
steps for expanding your portfolio.

https://username.github.io/repository-name

Chapter 8: Launching Your Website

Introduction

Congratulations! You’ve built and personalized your portfolio website. Now, it’s
time to make it accessible to the world. In this chapter, we’ll guide you through the steps to
launch your website using GitHub Pages, a free and reliable hosting platform. By the end
of this chapter, your website will be live and ready to share with potential clients,
employers, and collaborators.

8.1 Preparing Your Project for Deployment

Before deploying your website, let’s ensure everything is polished and functional.

1. Check Your Code:
o Validate your HTML using the W3C Validator.
o Validate your CSS using the W3C CSS Validator.
o Test JavaScript functionality in multiple browsers (e.g., Chrome, Firefox,

Safari).
2. Optimize Images:

o Use tools like TinyPNG or ImageOptim to compress image files without
losing quality.

3. Ensure Mobile Responsiveness:
o Test your website on different screen sizes using Chrome Developer Tools or

Responsive Design Checker.

8.2 Setting Up GitHub Pages

GitHub Pages is a simple way to host your website directly from a GitHub repository.

1. Create a GitHub Repository:
o Go to GitHub and log in or create an account.
o Click on the New Repository button.
o Name your repository yourusername.github.io and set it to Public.
o Click Create Repository.

2. Upload Your Website Files:
o On your computer, ensure all website files (HTML, CSS, JavaScript, images,

etc.) are in a single folder.
o In your GitHub repository, click on Add file > Upload files.
o Drag and drop your website folder contents into the GitHub interface.
o Click Commit changes to save the files to your repository.

3. Enable GitHub Pages:
o In your repository, go to Settings > Pages.
o Under "Branch," select main (or the branch where your files are located).
o Click Save.

https://validator.w3.org/
https://jigsaw.w3.org/css-validator/
https://tinypng.com/
https://imageoptim.com/
https://www.responsivedesignchecker.com/
https://github.com/

o Your website URL will appear (e.g., https://yourusername.github.io/portfolio-
website).

8.3 Testing and Sharing Your Website

Now that your site is live, it’s time to ensure it’s working perfectly.

1. Test Your Website:
o Open your GitHub Pages URL in a browser (https://yourusername.github.io).
o Check all links, images, and forms to ensure they work correctly.

2. Share Your Website:
o Add your website link to your email signature, LinkedIn profile, and other

professional networks.
o Share it with friends, family, and mentors for feedback.

8.4 Troubleshooting Common Issues
Sometimes, things might not go as planned. Here are some common problems and
solutions:

1. Page Not Found Error:
o Ensure your index.html file is in the root folder of your repository.

2. Broken Images or Links:
o Check that file paths are correct and match your repository structure.
o Ensure filenames match exactly (case-sensitive).

3. CSS or JavaScript Not Loading:
o Confirm that the <link> and <script> tags in your HTML have correct paths.

Conclusion

With your website live, you’ve taken a huge step toward showcasing your skills and
projects. This chapter marks the culmination of your journey from learning basic coding to
deploying a professional portfolio. Remember, your website is a living project—continue
updating it with new projects, skills, and designs as you grow.

Let’s move to the final chapter, where we’ll reflect on what you’ve learned and

discuss the next steps in your coding journey!

Chapter 9: Reflection and Next Steps

Introduction

Congratulations! You’ve reached the final chapter of this journey. By now, you’ve
gone from understanding the basics of HTML, CSS, and JavaScript to building,
personalizing, and deploying a fully functional portfolio website. This chapter will serve as
a moment to reflect on your accomplishments, celebrate your progress, and plan your next
steps as a web developer.

9.1 Reflecting on Your Journey

Take a moment to look back at how far you’ve come.

• What You’ve Learned:
o How to structure web pages with HTML.
o How to style and design websites using CSS.
o How to add interactivity with JavaScript.
o The importance of responsive design and accessibility.
o How to deploy a live website using GitHub Pages.

• What You’ve Built:
o A personalized portfolio website that showcases your skills and projects.
o A foundation for future projects and opportunities in web development.

These are significant milestones! Many people aspire to learn coding but never take

the first step—you’ve gone beyond that and created something real.

9.2 Beyond the Basics: What’s Next?

Now that you’ve built your first project, it’s time to think about how to keep growing.
Here are some suggestions:

1. Expand Your Portfolio:
o Add new projects that highlight a range of skills (e.g., animations, APIs, or

databases).
o Tackle real-world problems by creating tools or websites for friends, family,

or small businesses.
2. Learn Advanced Topics:

o Front-End Frameworks: Explore React, Vue.js, or Angular to build dynamic
user interfaces.

o Back-End Development: Learn about server-side technologies like Node.js,
Express, or Python with Flask/Django.

o Database Integration: Dive into databases like MongoDB, MySQL, or
PostgreSQL to build full-stack applications.

3. Join a Coding Community:

o Participate in forums like freeCodeCamp, Stack Overflow, or Reddit’s coding
communities.

o Attend local coding meetups or online events to network and learn.
4. Contribute to Open Source:

o Join GitHub projects to collaborate with other developers and gain real-world
experience.

5. Stay Updated:
o The tech industry evolves quickly. Follow blogs, YouTube channels, and

podcasts to stay current with trends and best practices.

9.3 Pursuing Opportunities

Your portfolio website is your calling card in the tech world. Use it to unlock new
opportunities:

• Freelancing: Offer your web development services to small businesses or
individuals.

• Job Applications: Showcase your portfolio to potential employers as part of your
application process.

• Personal Branding: Build an online presence by linking your website to your
LinkedIn, GitHub, and social media profiles.

9.4 Words of Encouragement

The journey of learning web development is never truly over—it’s a continuous
process of discovery, problem-solving, and growth. Every bug you fix, feature you add, or
project you complete will sharpen your skills and build your confidence.
Remember:

• It’s okay to make mistakes—that’s how you learn.
• Ask for help when you need it. The developer community is supportive and full of

resources.
• Stay curious, and don’t be afraid to experiment.

You’ve already proven that you have the determination to succeed. The web

development world is full of possibilities, and you’re just getting started.

Conclusion

This book was the beginning of your coding journey, but it’s not the end. You now
have the tools to build your ideas, showcase your skills, and pursue your goals. Keep
coding, keep learning, and keep building.

Your future in web development is bright—go out there and create something

amazing!
Happy Coding!

https://stackoverflow.com/

Thank You for Reading!

Stay Connected

Your journey in coding and programming doesn’t end here! Stay up-to-date with the latest

resources, tips, and updates by connecting with us:

Website: https://clarencescott.tech

Email: support@clarencescott.tech

Social Media:

• Instagram:@BioGlytch

• YouTube: @BioGlytch

Feedback Matters

Your thoughts are important! Share your feedback, suggestions, or questions by leaving a review

or reaching out via email. Your input helps us improve and create better learning experiences.

More from Clarence Scott

Explore our other books, tools, and resources for coding, programming, and web development.

Visit https://clarencescott.github.io for the full catalog and exclusive downloads!

Stay Curious, Keep Coding!

Remember, coding is a journey, not a destination. Keep learning, building, and innovating. The

world of technology awaits your creations!

